Toward personalized nasal surgery using computational fluid dynamics.
نویسندگان
چکیده
OBJECTIVE To evaluate whether virtual surgery performed on 3-dimensional (3D) nasal airway models can predict postsurgical, biophysical parameters obtained by computational fluid dynamics (CFD). METHODS Presurgery and postsurgery computed tomographic scans of a patient undergoing septoplasty and right inferior turbinate reduction (ITR) were used to generate 3D models of the nasal airway. Prior to obtaining the postsurgery scan, the presurgery model was digitally altered to generate 3 virtual surgery models: (1) right ITR only, (2) septoplasty only, and (3) septoplasty with right ITR. The results of the virtual surgery CFD analyses were compared with postsurgical CFD outcome measures including nasal resistance, unilateral airflow allocation, and regional airflow distribution. RESULTS Postsurgery CFD analysis and all virtual surgery models predicted similar reductions in overall nasal resistance, as well as more balanced airflow distribution between sides, primarily in the middle region, when compared with the presurgery state. In contrast, virtual ITR alone produced little change in either nasal resistance or regional airflow allocation. CONCLUSIONS We present an innovative approach for assessing functional outcomes of nasal surgery using CFD techniques. This preliminary study suggests that virtual nasal surgery has the potential to be a predictive tool that will enable surgeons to perform personalized nasal surgery using computer simulation techniques. Further investigation involving correlation of patient-reported measures with CFD outcome measures in multiple individuals is under way.
منابع مشابه
Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation.
OBJECTIVE To investigate the aerodynamic consequences of conservative unilateral inferior turbinate reduction using computational fluid dynamics methods to accomplish detailed nasal airflow simulations. DESIGN A high-resolution, finite-element mesh of the nasal airway was constructed from magnetic resonance imaging data of a healthy man. Steady-state, inspiratory airflow simulations were cond...
متن کاملVisualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation.
OBJECTIVES To visualize the velocity gradients and the vorticities of physiological unsteady nasal flow using the computational fluid dynamics method and to compare the inspiratory phase and expiratory phase flow patterns. DESIGN An anatomically correct 3-dimensional nasal and pharyngeal cavity was constructed from computed tomographic images of a healthy adult nose and pharynx. The unsteady ...
متن کاملCharacterization of postoperative changes in nasal airflow using a cadaveric computational fluid dynamics model: supporting the internal nasal valve.
IMPORTANCE Collapse or compromise of the internal nasal valve (INV) results in symptomatic nasal obstruction; thus, various surgical maneuvers are designed to support the INV. OBJECTIVE To determine the effect on nasal airflow after various surgical techniques focused at the level of the INV and lateral nasal sidewall. DESIGN AND SETTING A fresh cadaver head was obtained and underwent sutur...
متن کاملNumerical Simulations of Unsteady Aerodynamic Flows inside a Nasal Cavity with Functional Endoscopic Sinus Surgery
The aim was to evaluate the effects of Functional Endoscopic Sinus Surgery (FESS) on nasal aerodynamic flow patterns using Computational Fluid Dynamics (CFD) simulations. A 3-dimensional model of nasal cavity was first constructed from CT scans of a human subject with FESS interventions on left nasal cavity. Computational fluid dynamics (CFD) simulations were then carried out for unsteady airfl...
متن کاملComputational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
Controversies exist regarding the resection or preservation of the middle turbinate (MT) during functional endoscopic sinus surgery. Any MT resection will perturb nasal airflow and may affect the mucociliary dynamics of the osteomeatal complex. Neither rhinometry nor computed tomography (CT) can adequately quantify nasal airflow pattern changes following surgery. This study explores the feasibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of facial plastic surgery
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2011